Metamath Proof Explorer


Theorem 19.9d2r

Description: A deduction version of one direction of 19.9 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses 19.9d2r.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
19.9d2r.2 ( 𝜑 → Ⅎ 𝑦 𝜓 )
19.9d2r.3 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
Assertion 19.9d2r ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 19.9d2r.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
2 19.9d2r.2 ( 𝜑 → Ⅎ 𝑦 𝜓 )
3 19.9d2r.3 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
4 nfv 𝑦 𝜑
5 4 1 2 3 19.9d2rf ( 𝜑𝜓 )