Metamath Proof Explorer


Theorem 1nsgtrivd

Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 1nsgtrivd.1 B=BaseG
1nsgtrivd.2 0˙=0G
1nsgtrivd.3 φGGrp
1nsgtrivd.4 φNrmSGrpG1𝑜
Assertion 1nsgtrivd φB=0˙

Proof

Step Hyp Ref Expression
1 1nsgtrivd.1 B=BaseG
2 1nsgtrivd.2 0˙=0G
3 1nsgtrivd.3 φGGrp
4 1nsgtrivd.4 φNrmSGrpG1𝑜
5 1 nsgid GGrpBNrmSGrpG
6 3 5 syl φBNrmSGrpG
7 2 0nsg GGrp0˙NrmSGrpG
8 3 7 syl φ0˙NrmSGrpG
9 en1eqsn 0˙NrmSGrpGNrmSGrpG1𝑜NrmSGrpG=0˙
10 8 4 9 syl2anc φNrmSGrpG=0˙
11 6 10 eleqtrd φB0˙
12 snex 0˙V
13 elsn2g 0˙VB0˙B=0˙
14 12 13 mp1i φB0˙B=0˙
15 11 14 mpbid φB=0˙