Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1nsgtrivd.1 | |
|
1nsgtrivd.2 | |
||
1nsgtrivd.3 | |
||
1nsgtrivd.4 | |
||
Assertion | 1nsgtrivd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nsgtrivd.1 | |
|
2 | 1nsgtrivd.2 | |
|
3 | 1nsgtrivd.3 | |
|
4 | 1nsgtrivd.4 | |
|
5 | 1 | nsgid | |
6 | 3 5 | syl | |
7 | 2 | 0nsg | |
8 | 3 7 | syl | |
9 | en1eqsn | |
|
10 | 8 4 9 | syl2anc | |
11 | 6 10 | eleqtrd | |
12 | snex | |
|
13 | elsn2g | |
|
14 | 12 13 | mp1i | |
15 | 11 14 | mpbid | |