Metamath Proof Explorer


Theorem 1nsgtrivd

Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 1nsgtrivd.1
|- B = ( Base ` G )
1nsgtrivd.2
|- .0. = ( 0g ` G )
1nsgtrivd.3
|- ( ph -> G e. Grp )
1nsgtrivd.4
|- ( ph -> ( NrmSGrp ` G ) ~~ 1o )
Assertion 1nsgtrivd
|- ( ph -> B = { .0. } )

Proof

Step Hyp Ref Expression
1 1nsgtrivd.1
 |-  B = ( Base ` G )
2 1nsgtrivd.2
 |-  .0. = ( 0g ` G )
3 1nsgtrivd.3
 |-  ( ph -> G e. Grp )
4 1nsgtrivd.4
 |-  ( ph -> ( NrmSGrp ` G ) ~~ 1o )
5 1 nsgid
 |-  ( G e. Grp -> B e. ( NrmSGrp ` G ) )
6 3 5 syl
 |-  ( ph -> B e. ( NrmSGrp ` G ) )
7 2 0nsg
 |-  ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) )
8 3 7 syl
 |-  ( ph -> { .0. } e. ( NrmSGrp ` G ) )
9 en1eqsn
 |-  ( ( { .0. } e. ( NrmSGrp ` G ) /\ ( NrmSGrp ` G ) ~~ 1o ) -> ( NrmSGrp ` G ) = { { .0. } } )
10 8 4 9 syl2anc
 |-  ( ph -> ( NrmSGrp ` G ) = { { .0. } } )
11 6 10 eleqtrd
 |-  ( ph -> B e. { { .0. } } )
12 snex
 |-  { .0. } e. _V
13 elsn2g
 |-  ( { .0. } e. _V -> ( B e. { { .0. } } <-> B = { .0. } ) )
14 12 13 mp1i
 |-  ( ph -> ( B e. { { .0. } } <-> B = { .0. } ) )
15 11 14 mpbid
 |-  ( ph -> B = { .0. } )