Step |
Hyp |
Ref |
Expression |
1 |
|
1nsgtrivd.1 |
|- B = ( Base ` G ) |
2 |
|
1nsgtrivd.2 |
|- .0. = ( 0g ` G ) |
3 |
|
1nsgtrivd.3 |
|- ( ph -> G e. Grp ) |
4 |
|
1nsgtrivd.4 |
|- ( ph -> ( NrmSGrp ` G ) ~~ 1o ) |
5 |
1
|
nsgid |
|- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
6 |
3 5
|
syl |
|- ( ph -> B e. ( NrmSGrp ` G ) ) |
7 |
2
|
0nsg |
|- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
8 |
3 7
|
syl |
|- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
9 |
|
en1eqsn |
|- ( ( { .0. } e. ( NrmSGrp ` G ) /\ ( NrmSGrp ` G ) ~~ 1o ) -> ( NrmSGrp ` G ) = { { .0. } } ) |
10 |
8 4 9
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } } ) |
11 |
6 10
|
eleqtrd |
|- ( ph -> B e. { { .0. } } ) |
12 |
|
snex |
|- { .0. } e. _V |
13 |
|
elsn2g |
|- ( { .0. } e. _V -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
14 |
12 13
|
mp1i |
|- ( ph -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
15 |
11 14
|
mpbid |
|- ( ph -> B = { .0. } ) |