Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Finite sets (cont.) 1sdom2  
				
		 
		
			
		 
		Description:   Ordinal 1 is strictly dominated by ordinal 2.  For a shorter proof
     requiring ax-un  , see 1sdom2ALT  .  (Contributed by NM , 4-Apr-2007) 
     Avoid ax-un  .  (Revised by BTernaryTau , 8-Dec-2024) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					1sdom2   ⊢   1  𝑜    ≺   2  𝑜      
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							2on0  ⊢    2  𝑜    ≠  ∅       
						
							2 
								
							 
							2oex  ⊢    2  𝑜    ∈  V       
						
							3 
								2 
							 
							0sdom   ⊢  ∅  ≺   2  𝑜   ↔    2  𝑜    ≠  ∅         
						
							4 
								1  3 
							 
							mpbir  ⊢  ∅  ≺   2  𝑜      
						
							5 
								
							 
							0sdom1dom   ⊢  ∅  ≺   2  𝑜   ↔   1  𝑜    ≼   2  𝑜        
						
							6 
								4  5 
							 
							mpbi  ⊢   1  𝑜    ≼   2  𝑜      
						
							7 
								
							 
							snnen2o  ⊢   ¬   ∅    ≈   2  𝑜        
						
							8 
								
							 
							df1o2  ⊢    1  𝑜    =   ∅         
						
							9 
								8 
							 
							breq1i   ⊢   1  𝑜    ≈   2  𝑜   ↔   ∅    ≈   2  𝑜        
						
							10 
								7  9 
							 
							mtbir  ⊢   ¬   1  𝑜    ≈   2  𝑜        
						
							11 
								
							 
							brsdom   ⊢   1  𝑜    ≺   2  𝑜   ↔    1  𝑜    ≼   2  𝑜   ∧   ¬   1  𝑜    ≈   2  𝑜           
						
							12 
								6  10  11 
							 
							mpbir2an  ⊢   1  𝑜    ≺   2  𝑜