Metamath Proof Explorer


Theorem 1sdom2

Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un , see 1sdom2ALT . (Contributed by NM, 4-Apr-2007) Avoid ax-un . (Revised by BTernaryTau, 8-Dec-2024)

Ref Expression
Assertion 1sdom2 1𝑜2𝑜

Proof

Step Hyp Ref Expression
1 2on0 2𝑜
2 2oex 2𝑜V
3 2 0sdom 2𝑜2𝑜
4 1 3 mpbir 2𝑜
5 0sdom1dom 2𝑜1𝑜2𝑜
6 4 5 mpbi 1𝑜2𝑜
7 snnen2o ¬2𝑜
8 df1o2 1𝑜=
9 8 breq1i 1𝑜2𝑜2𝑜
10 7 9 mtbir ¬1𝑜2𝑜
11 brsdom 1𝑜2𝑜1𝑜2𝑜¬1𝑜2𝑜
12 6 10 11 mpbir2an 1𝑜2𝑜