Metamath Proof Explorer


Theorem 1wlkdlem3

Description: Lemma 3 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p P=⟨“XY”⟩
1wlkd.f F=⟨“J”⟩
1wlkd.x φXV
1wlkd.y φYV
1wlkd.l φX=YIJ=X
1wlkd.j φXYXYIJ
Assertion 1wlkdlem3 φFWorddomI

Proof

Step Hyp Ref Expression
1 1wlkd.p P=⟨“XY”⟩
2 1wlkd.f F=⟨“J”⟩
3 1wlkd.x φXV
4 1wlkd.y φYV
5 1wlkd.l φX=YIJ=X
6 1wlkd.j φXYXYIJ
7 1 2 3 4 5 6 1wlkdlem2 φXIJ
8 elfvdm XIJJdomI
9 s1cl JdomI⟨“J”⟩WorddomI
10 2 9 eqeltrid JdomIFWorddomI
11 7 8 10 3syl φFWorddomI