Metamath Proof Explorer


Theorem 1wlkdlem2

Description: Lemma 2 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p P=⟨“XY”⟩
1wlkd.f F=⟨“J”⟩
1wlkd.x φXV
1wlkd.y φYV
1wlkd.l φX=YIJ=X
1wlkd.j φXYXYIJ
Assertion 1wlkdlem2 φXIJ

Proof

Step Hyp Ref Expression
1 1wlkd.p P=⟨“XY”⟩
2 1wlkd.f F=⟨“J”⟩
3 1wlkd.x φXV
4 1wlkd.y φYV
5 1wlkd.l φX=YIJ=X
6 1wlkd.j φXYXYIJ
7 snidg XVXX
8 3 7 syl φXX
9 8 adantr φX=YXX
10 9 5 eleqtrrd φX=YXIJ
11 4 adantr φXYYV
12 prssg XVYVXIJYIJXYIJ
13 3 11 12 syl2an2r φXYXIJYIJXYIJ
14 6 13 mpbird φXYXIJYIJ
15 14 simpld φXYXIJ
16 10 15 pm2.61dane φXIJ