Metamath Proof Explorer


Theorem 1wlkdlem2

Description: Lemma 2 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p
|- P = <" X Y ">
1wlkd.f
|- F = <" J ">
1wlkd.x
|- ( ph -> X e. V )
1wlkd.y
|- ( ph -> Y e. V )
1wlkd.l
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
1wlkd.j
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
Assertion 1wlkdlem2
|- ( ph -> X e. ( I ` J ) )

Proof

Step Hyp Ref Expression
1 1wlkd.p
 |-  P = <" X Y ">
2 1wlkd.f
 |-  F = <" J ">
3 1wlkd.x
 |-  ( ph -> X e. V )
4 1wlkd.y
 |-  ( ph -> Y e. V )
5 1wlkd.l
 |-  ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
6 1wlkd.j
 |-  ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
7 snidg
 |-  ( X e. V -> X e. { X } )
8 3 7 syl
 |-  ( ph -> X e. { X } )
9 8 adantr
 |-  ( ( ph /\ X = Y ) -> X e. { X } )
10 9 5 eleqtrrd
 |-  ( ( ph /\ X = Y ) -> X e. ( I ` J ) )
11 4 adantr
 |-  ( ( ph /\ X =/= Y ) -> Y e. V )
12 prssg
 |-  ( ( X e. V /\ Y e. V ) -> ( ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) <-> { X , Y } C_ ( I ` J ) ) )
13 3 11 12 syl2an2r
 |-  ( ( ph /\ X =/= Y ) -> ( ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) <-> { X , Y } C_ ( I ` J ) ) )
14 6 13 mpbird
 |-  ( ( ph /\ X =/= Y ) -> ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) )
15 14 simpld
 |-  ( ( ph /\ X =/= Y ) -> X e. ( I ` J ) )
16 10 15 pm2.61dane
 |-  ( ph -> X e. ( I ` J ) )