Description: Lemma 3 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
||
| 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
||
| Assertion | 1wlkdlem3 | |- ( ph -> F e. Word dom I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
|
| 6 | 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
|
| 7 | 1 2 3 4 5 6 | 1wlkdlem2 | |- ( ph -> X e. ( I ` J ) ) |
| 8 | elfvdm | |- ( X e. ( I ` J ) -> J e. dom I ) |
|
| 9 | s1cl | |- ( J e. dom I -> <" J "> e. Word dom I ) |
|
| 10 | 2 9 | eqeltrid | |- ( J e. dom I -> F e. Word dom I ) |
| 11 | 7 8 10 | 3syl | |- ( ph -> F e. Word dom I ) |