Description: Lemma 3 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | ||
| 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | ||
| Assertion | 1wlkdlem3 | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 4 | 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | |
| 6 | 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | |
| 7 | 1 2 3 4 5 6 | 1wlkdlem2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 8 | elfvdm | ⊢ ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) → 𝐽 ∈ dom 𝐼 ) | |
| 9 | s1cl | ⊢ ( 𝐽 ∈ dom 𝐼 → 〈“ 𝐽 ”〉 ∈ Word dom 𝐼 ) | |
| 10 | 2 9 | eqeltrid | ⊢ ( 𝐽 ∈ dom 𝐼 → 𝐹 ∈ Word dom 𝐼 ) |
| 11 | 7 8 10 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |