Metamath Proof Explorer


Theorem 2cprodeq2dv

Description: Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis 2cprodeq2dv.1 φjAkBC=D
Assertion 2cprodeq2dv φjAkBC=jAkBD

Proof

Step Hyp Ref Expression
1 2cprodeq2dv.1 φjAkBC=D
2 1 3expa φjAkBC=D
3 2 prodeq2dv φjAkBC=kBD
4 3 prodeq2dv φjAkBC=jAkBD