Metamath Proof Explorer


Theorem 2eu1

Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2eu1v when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 23-Apr-2023) (New usage is discouraged.)

Ref Expression
Assertion 2eu1 x*yφ∃!x∃!yφ∃!xyφ∃!yxφ

Proof

Step Hyp Ref Expression
1 2eu2ex ∃!x∃!yφxyφ
2 moeu *yφyφ∃!yφ
3 2 albii x*yφxyφ∃!yφ
4 euim xyφxyφ∃!yφ∃!x∃!yφ∃!xyφ
5 3 4 sylan2b xyφx*yφ∃!x∃!yφ∃!xyφ
6 5 ex xyφx*yφ∃!x∃!yφ∃!xyφ
7 1 6 syl ∃!x∃!yφx*yφ∃!x∃!yφ∃!xyφ
8 7 pm2.43b x*yφ∃!x∃!yφ∃!xyφ
9 2euswap x*yφ∃!xyφ∃!yxφ
10 8 9 syld x*yφ∃!x∃!yφ∃!yxφ
11 8 10 jcad x*yφ∃!x∃!yφ∃!xyφ∃!yxφ
12 2exeu ∃!xyφ∃!yxφ∃!x∃!yφ
13 11 12 impbid1 x*yφ∃!x∃!yφ∃!xyφ∃!yxφ