Metamath Proof Explorer


Theorem 2eu2

Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Dec-2001) (New usage is discouraged.)

Ref Expression
Assertion 2eu2 ∃!yxφ∃!x∃!yφ∃!xyφ

Proof

Step Hyp Ref Expression
1 eumo ∃!yxφ*yxφ
2 2moex *yxφx*yφ
3 2eu1 x*yφ∃!x∃!yφ∃!xyφ∃!yxφ
4 simpl ∃!xyφ∃!yxφ∃!xyφ
5 3 4 biimtrdi x*yφ∃!x∃!yφ∃!xyφ
6 1 2 5 3syl ∃!yxφ∃!x∃!yφ∃!xyφ
7 2exeu ∃!xyφ∃!yxφ∃!x∃!yφ
8 7 expcom ∃!yxφ∃!xyφ∃!x∃!yφ
9 6 8 impbid ∃!yxφ∃!x∃!yφ∃!xyφ