Metamath Proof Explorer


Theorem 2eu3

Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 23-Apr-2023) (New usage is discouraged.)

Ref Expression
Assertion 2eu3 xy*xφ*yφ∃!x∃!yφ∃!y∃!xφ∃!xyφ∃!yxφ

Proof

Step Hyp Ref Expression
1 nfmo1 y*yφ
2 1 19.31 y*xφ*yφy*xφ*yφ
3 2 albii xy*xφ*yφxy*xφ*yφ
4 nfmo1 x*xφ
5 4 nfal xy*xφ
6 5 19.32 xy*xφ*yφy*xφx*yφ
7 3 6 bitri xy*xφ*yφy*xφx*yφ
8 2eu1 y*xφ∃!y∃!xφ∃!yxφ∃!xyφ
9 8 biimpd y*xφ∃!y∃!xφ∃!yxφ∃!xyφ
10 ancom ∃!yxφ∃!xyφ∃!xyφ∃!yxφ
11 9 10 imbitrdi y*xφ∃!y∃!xφ∃!xyφ∃!yxφ
12 2eu1 x*yφ∃!x∃!yφ∃!xyφ∃!yxφ
13 12 biimpd x*yφ∃!x∃!yφ∃!xyφ∃!yxφ
14 11 13 jaoa y*xφx*yφ∃!y∃!xφ∃!x∃!yφ∃!xyφ∃!yxφ
15 14 ancomsd y*xφx*yφ∃!x∃!yφ∃!y∃!xφ∃!xyφ∃!yxφ
16 2exeu ∃!xyφ∃!yxφ∃!x∃!yφ
17 2exeu ∃!yxφ∃!xyφ∃!y∃!xφ
18 17 ancoms ∃!xyφ∃!yxφ∃!y∃!xφ
19 16 18 jca ∃!xyφ∃!yxφ∃!x∃!yφ∃!y∃!xφ
20 15 19 impbid1 y*xφx*yφ∃!x∃!yφ∃!y∃!xφ∃!xyφ∃!yxφ
21 7 20 sylbi xy*xφ*yφ∃!x∃!yφ∃!y∃!xφ∃!xyφ∃!yxφ