Metamath Proof Explorer


Theorem 2halves

Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005)

Ref Expression
Assertion 2halves AA2+A2=A

Proof

Step Hyp Ref Expression
1 2times A2A=A+A
2 1 oveq1d A2A2=A+A2
3 2cn 2
4 2ne0 20
5 divcan3 A2202A2=A
6 3 4 5 mp3an23 A2A2=A
7 2cnne0 220
8 divdir AA220A+A2=A2+A2
9 7 8 mp3an3 AAA+A2=A2+A2
10 9 anidms AA+A2=A2+A2
11 2 6 10 3eqtr3rd AA2+A2=A