Metamath Proof Explorer


Theorem 2llnma2

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012)

Ref Expression
Hypotheses 2llnm.l ˙=K
2llnm.j ˙=joinK
2llnm.m ˙=meetK
2llnm.a A=AtomsK
Assertion 2llnma2 KHLPAQARAPQ¬R˙P˙QR˙P˙R˙Q=R

Proof

Step Hyp Ref Expression
1 2llnm.l ˙=K
2 2llnm.j ˙=joinK
3 2llnm.m ˙=meetK
4 2llnm.a A=AtomsK
5 simp1 KHLPAQARAPQ¬R˙P˙QKHL
6 simp21 KHLPAQARAPQ¬R˙P˙QPA
7 simp23 KHLPAQARAPQ¬R˙P˙QRA
8 simp22 KHLPAQARAPQ¬R˙P˙QQA
9 1 2 4 4atlem0ae KHLPAQARAPQ¬R˙P˙Q¬Q˙P˙R
10 1 2 3 4 2llnma1 KHLPARAQA¬Q˙P˙RR˙P˙R˙Q=R
11 5 6 7 8 9 10 syl131anc KHLPAQARAPQ¬R˙P˙QR˙P˙R˙Q=R