Metamath Proof Explorer


Theorem 2llnma2rN

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 2llnm.l ˙=K
2llnm.j ˙=joinK
2llnm.m ˙=meetK
2llnm.a A=AtomsK
Assertion 2llnma2rN KHLPAQARAPQ¬R˙P˙QP˙R˙Q˙R=R

Proof

Step Hyp Ref Expression
1 2llnm.l ˙=K
2 2llnm.j ˙=joinK
3 2llnm.m ˙=meetK
4 2llnm.a A=AtomsK
5 simp1 KHLPAQARAPQ¬R˙P˙QKHL
6 simp21 KHLPAQARAPQ¬R˙P˙QPA
7 simp23 KHLPAQARAPQ¬R˙P˙QRA
8 2 4 hlatjcom KHLPARAP˙R=R˙P
9 5 6 7 8 syl3anc KHLPAQARAPQ¬R˙P˙QP˙R=R˙P
10 simp22 KHLPAQARAPQ¬R˙P˙QQA
11 2 4 hlatjcom KHLQARAQ˙R=R˙Q
12 5 10 7 11 syl3anc KHLPAQARAPQ¬R˙P˙QQ˙R=R˙Q
13 9 12 oveq12d KHLPAQARAPQ¬R˙P˙QP˙R˙Q˙R=R˙P˙R˙Q
14 1 2 3 4 2llnma2 KHLPAQARAPQ¬R˙P˙QR˙P˙R˙Q=R
15 13 14 eqtrd KHLPAQARAPQ¬R˙P˙QP˙R˙Q˙R=R