Metamath Proof Explorer


Theorem 2llnma2rN

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 2llnm.l
|- .<_ = ( le ` K )
2llnm.j
|- .\/ = ( join ` K )
2llnm.m
|- ./\ = ( meet ` K )
2llnm.a
|- A = ( Atoms ` K )
Assertion 2llnma2rN
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = R )

Proof

Step Hyp Ref Expression
1 2llnm.l
 |-  .<_ = ( le ` K )
2 2llnm.j
 |-  .\/ = ( join ` K )
3 2llnm.m
 |-  ./\ = ( meet ` K )
4 2llnm.a
 |-  A = ( Atoms ` K )
5 simp1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. HL )
6 simp21
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P e. A )
7 simp23
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R e. A )
8 2 4 hlatjcom
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) )
9 5 6 7 8 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) = ( R .\/ P ) )
10 simp22
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q e. A )
11 2 4 hlatjcom
 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) )
12 5 10 7 11 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )
13 9 12 oveq12d
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = ( ( R .\/ P ) ./\ ( R .\/ Q ) ) )
14 1 2 3 4 2llnma2
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )
15 13 14 eqtrd
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = R )