Metamath Proof Explorer


Theorem 2llnma1

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses 2llnm.l ˙=K
2llnm.j ˙=joinK
2llnm.m ˙=meetK
2llnm.a A=AtomsK
Assertion 2llnma1 KHLPAQARA¬R˙P˙QQ˙P˙Q˙R=Q

Proof

Step Hyp Ref Expression
1 2llnm.l ˙=K
2 2llnm.j ˙=joinK
3 2llnm.m ˙=meetK
4 2llnm.a A=AtomsK
5 simp1 KHLPAQARA¬R˙P˙QKHL
6 simp21 KHLPAQARA¬R˙P˙QPA
7 eqid BaseK=BaseK
8 7 4 atbase PAPBaseK
9 6 8 syl KHLPAQARA¬R˙P˙QPBaseK
10 simp22 KHLPAQARA¬R˙P˙QQA
11 simp23 KHLPAQARA¬R˙P˙QRA
12 simp3 KHLPAQARA¬R˙P˙Q¬R˙P˙Q
13 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
14 5 6 10 13 syl3anc KHLPAQARA¬R˙P˙QP˙Q=Q˙P
15 14 breq2d KHLPAQARA¬R˙P˙QR˙P˙QR˙Q˙P
16 12 15 mtbid KHLPAQARA¬R˙P˙Q¬R˙Q˙P
17 7 1 2 3 4 2llnma1b KHLPBaseKQARA¬R˙Q˙PQ˙P˙Q˙R=Q
18 5 9 10 11 16 17 syl131anc KHLPAQARA¬R˙P˙QQ˙P˙Q˙R=Q