| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2llnm.l |  | 
						
							| 2 |  | 2llnm.j |  | 
						
							| 3 |  | 2llnm.m |  | 
						
							| 4 |  | 2llnm.a |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 |  | simp21 |  | 
						
							| 7 |  | simp23 |  | 
						
							| 8 | 2 4 | hlatjcom |  | 
						
							| 9 | 5 6 7 8 | syl3anc |  | 
						
							| 10 |  | simp22 |  | 
						
							| 11 | 2 4 | hlatjcom |  | 
						
							| 12 | 5 10 7 11 | syl3anc |  | 
						
							| 13 | 9 12 | oveq12d |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 |  | simpl1 |  | 
						
							| 17 |  | simpl23 |  | 
						
							| 18 | 2 4 | hlatjidm |  | 
						
							| 19 | 16 17 18 | syl2anc |  | 
						
							| 20 | 15 19 | eqtrd |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 | 1 2 4 | hlatlej1 |  | 
						
							| 23 | 5 7 6 22 | syl3anc |  | 
						
							| 24 |  | hllat |  | 
						
							| 25 | 24 | 3ad2ant1 |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 26 4 | atbase |  | 
						
							| 28 | 7 27 | syl |  | 
						
							| 29 | 26 2 4 | hlatjcl |  | 
						
							| 30 | 5 7 6 29 | syl3anc |  | 
						
							| 31 | 26 1 3 | latleeqm2 |  | 
						
							| 32 | 25 28 30 31 | syl3anc |  | 
						
							| 33 | 23 32 | mpbid |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 21 34 | eqtrd |  | 
						
							| 36 |  | simpl1 |  | 
						
							| 37 |  | simpl21 |  | 
						
							| 38 |  | simpl23 |  | 
						
							| 39 |  | simpl22 |  | 
						
							| 40 |  | simpl3 |  | 
						
							| 41 | 1 2 4 | hlatlej2 |  | 
						
							| 42 | 5 6 7 41 | syl3anc |  | 
						
							| 43 | 26 4 | atbase |  | 
						
							| 44 | 10 43 | syl |  | 
						
							| 45 | 26 2 4 | hlatjcl |  | 
						
							| 46 | 5 6 7 45 | syl3anc |  | 
						
							| 47 | 26 1 2 | latjle12 |  | 
						
							| 48 | 25 44 28 46 47 | syl13anc |  | 
						
							| 49 | 48 | biimpd |  | 
						
							| 50 | 42 49 | mpan2d |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 1 2 4 | ps-1 |  | 
						
							| 54 | 36 39 38 52 37 38 53 | syl132anc |  | 
						
							| 55 | 54 | biimpd |  | 
						
							| 56 |  | eqcom |  | 
						
							| 57 | 55 56 | imbitrdi |  | 
						
							| 58 | 51 57 | syld |  | 
						
							| 59 | 58 | necon3ad |  | 
						
							| 60 | 40 59 | mpd |  | 
						
							| 61 | 1 2 3 4 | 2llnma1 |  | 
						
							| 62 | 36 37 38 39 60 61 | syl131anc |  | 
						
							| 63 | 35 62 | pm2.61dane |  | 
						
							| 64 | 13 63 | eqtrd |  |