Step |
Hyp |
Ref |
Expression |
1 |
|
2llnm.l |
|- .<_ = ( le ` K ) |
2 |
|
2llnm.j |
|- .\/ = ( join ` K ) |
3 |
|
2llnm.m |
|- ./\ = ( meet ` K ) |
4 |
|
2llnm.a |
|- A = ( Atoms ` K ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> K e. HL ) |
6 |
|
simp21 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> P e. A ) |
7 |
|
simp23 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R e. A ) |
8 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) ) |
9 |
5 6 7 8
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( P .\/ R ) = ( R .\/ P ) ) |
10 |
|
simp22 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> Q e. A ) |
11 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
12 |
5 10 7 11
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
13 |
9 12
|
oveq12d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) |
14 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> Q = R ) |
15 |
14
|
oveq2d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ Q ) = ( R .\/ R ) ) |
16 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> K e. HL ) |
17 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> R e. A ) |
18 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ R ) = R ) |
20 |
15 19
|
eqtrd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ Q ) = R ) |
21 |
20
|
oveq2d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = ( ( R .\/ P ) ./\ R ) ) |
22 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> R .<_ ( R .\/ P ) ) |
23 |
5 7 6 22
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R .<_ ( R .\/ P ) ) |
24 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
25 |
24
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> K e. Lat ) |
26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
27 |
26 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
28 |
7 27
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R e. ( Base ` K ) ) |
29 |
26 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
30 |
5 7 6 29
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
31 |
26 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) ) -> ( R .<_ ( R .\/ P ) <-> ( ( R .\/ P ) ./\ R ) = R ) ) |
32 |
25 28 30 31
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( R .<_ ( R .\/ P ) <-> ( ( R .\/ P ) ./\ R ) = R ) ) |
33 |
23 32
|
mpbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( R .\/ P ) ./\ R ) = R ) |
34 |
33
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ R ) = R ) |
35 |
21 34
|
eqtrd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
36 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> K e. HL ) |
37 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> P e. A ) |
38 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> R e. A ) |
39 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> Q e. A ) |
40 |
|
simpl3 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( P .\/ R ) =/= ( Q .\/ R ) ) |
41 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> R .<_ ( P .\/ R ) ) |
42 |
5 6 7 41
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R .<_ ( P .\/ R ) ) |
43 |
26 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
44 |
10 43
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> Q e. ( Base ` K ) ) |
45 |
26 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) |
46 |
5 6 7 45
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
47 |
26 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) <-> ( Q .\/ R ) .<_ ( P .\/ R ) ) ) |
48 |
25 44 28 46 47
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) <-> ( Q .\/ R ) .<_ ( P .\/ R ) ) ) |
49 |
48
|
biimpd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) ) |
50 |
42 49
|
mpan2d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( Q .<_ ( P .\/ R ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) ) |
51 |
50
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( Q .<_ ( P .\/ R ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) ) |
52 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> Q =/= R ) |
53 |
1 2 4
|
ps-1 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ Q =/= R ) /\ ( P e. A /\ R e. A ) ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) <-> ( Q .\/ R ) = ( P .\/ R ) ) ) |
54 |
36 39 38 52 37 38 53
|
syl132anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) <-> ( Q .\/ R ) = ( P .\/ R ) ) ) |
55 |
54
|
biimpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) -> ( Q .\/ R ) = ( P .\/ R ) ) ) |
56 |
|
eqcom |
|- ( ( Q .\/ R ) = ( P .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) |
57 |
55 56
|
syl6ib |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
58 |
51 57
|
syld |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( Q .<_ ( P .\/ R ) -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
59 |
58
|
necon3ad |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( P .\/ R ) =/= ( Q .\/ R ) -> -. Q .<_ ( P .\/ R ) ) ) |
60 |
40 59
|
mpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> -. Q .<_ ( P .\/ R ) ) |
61 |
1 2 3 4
|
2llnma1 |
|- ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ R ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
62 |
36 37 38 39 60 61
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
63 |
35 62
|
pm2.61dane |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
64 |
13 63
|
eqtrd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = R ) |