Metamath Proof Explorer


Theorem 2llnma3r

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013)

Ref Expression
Hypotheses 2llnm.l
|- .<_ = ( le ` K )
2llnm.j
|- .\/ = ( join ` K )
2llnm.m
|- ./\ = ( meet ` K )
2llnm.a
|- A = ( Atoms ` K )
Assertion 2llnma3r
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = R )

Proof

Step Hyp Ref Expression
1 2llnm.l
 |-  .<_ = ( le ` K )
2 2llnm.j
 |-  .\/ = ( join ` K )
3 2llnm.m
 |-  ./\ = ( meet ` K )
4 2llnm.a
 |-  A = ( Atoms ` K )
5 simp1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> K e. HL )
6 simp21
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> P e. A )
7 simp23
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R e. A )
8 2 4 hlatjcom
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) )
9 5 6 7 8 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( P .\/ R ) = ( R .\/ P ) )
10 simp22
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> Q e. A )
11 2 4 hlatjcom
 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) )
12 5 10 7 11 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )
13 9 12 oveq12d
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = ( ( R .\/ P ) ./\ ( R .\/ Q ) ) )
14 simpr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> Q = R )
15 14 oveq2d
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ Q ) = ( R .\/ R ) )
16 simpl1
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> K e. HL )
17 simpl23
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> R e. A )
18 2 4 hlatjidm
 |-  ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R )
19 16 17 18 syl2anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ R ) = R )
20 15 19 eqtrd
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( R .\/ Q ) = R )
21 20 oveq2d
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = ( ( R .\/ P ) ./\ R ) )
22 1 2 4 hlatlej1
 |-  ( ( K e. HL /\ R e. A /\ P e. A ) -> R .<_ ( R .\/ P ) )
23 5 7 6 22 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R .<_ ( R .\/ P ) )
24 hllat
 |-  ( K e. HL -> K e. Lat )
25 24 3ad2ant1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> K e. Lat )
26 eqid
 |-  ( Base ` K ) = ( Base ` K )
27 26 4 atbase
 |-  ( R e. A -> R e. ( Base ` K ) )
28 7 27 syl
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R e. ( Base ` K ) )
29 26 2 4 hlatjcl
 |-  ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) )
30 5 7 6 29 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( R .\/ P ) e. ( Base ` K ) )
31 26 1 3 latleeqm2
 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) ) -> ( R .<_ ( R .\/ P ) <-> ( ( R .\/ P ) ./\ R ) = R ) )
32 25 28 30 31 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( R .<_ ( R .\/ P ) <-> ( ( R .\/ P ) ./\ R ) = R ) )
33 23 32 mpbid
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( R .\/ P ) ./\ R ) = R )
34 33 adantr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ R ) = R )
35 21 34 eqtrd
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q = R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )
36 simpl1
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> K e. HL )
37 simpl21
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> P e. A )
38 simpl23
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> R e. A )
39 simpl22
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> Q e. A )
40 simpl3
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( P .\/ R ) =/= ( Q .\/ R ) )
41 1 2 4 hlatlej2
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> R .<_ ( P .\/ R ) )
42 5 6 7 41 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> R .<_ ( P .\/ R ) )
43 26 4 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
44 10 43 syl
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> Q e. ( Base ` K ) )
45 26 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) )
46 5 6 7 45 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( P .\/ R ) e. ( Base ` K ) )
47 26 1 2 latjle12
 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) <-> ( Q .\/ R ) .<_ ( P .\/ R ) ) )
48 25 44 28 46 47 syl13anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) <-> ( Q .\/ R ) .<_ ( P .\/ R ) ) )
49 48 biimpd
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( Q .<_ ( P .\/ R ) /\ R .<_ ( P .\/ R ) ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) )
50 42 49 mpan2d
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( Q .<_ ( P .\/ R ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) )
51 50 adantr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( Q .<_ ( P .\/ R ) -> ( Q .\/ R ) .<_ ( P .\/ R ) ) )
52 simpr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> Q =/= R )
53 1 2 4 ps-1
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ Q =/= R ) /\ ( P e. A /\ R e. A ) ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) <-> ( Q .\/ R ) = ( P .\/ R ) ) )
54 36 39 38 52 37 38 53 syl132anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) <-> ( Q .\/ R ) = ( P .\/ R ) ) )
55 54 biimpd
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) -> ( Q .\/ R ) = ( P .\/ R ) ) )
56 eqcom
 |-  ( ( Q .\/ R ) = ( P .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) )
57 55 56 syl6ib
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( Q .\/ R ) .<_ ( P .\/ R ) -> ( P .\/ R ) = ( Q .\/ R ) ) )
58 51 57 syld
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( Q .<_ ( P .\/ R ) -> ( P .\/ R ) = ( Q .\/ R ) ) )
59 58 necon3ad
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( P .\/ R ) =/= ( Q .\/ R ) -> -. Q .<_ ( P .\/ R ) ) )
60 40 59 mpd
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> -. Q .<_ ( P .\/ R ) )
61 1 2 3 4 2llnma1
 |-  ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ R ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )
62 36 37 38 39 60 61 syl131anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) /\ Q =/= R ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )
63 35 62 pm2.61dane
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )
64 13 63 eqtrd
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P .\/ R ) =/= ( Q .\/ R ) ) -> ( ( P .\/ R ) ./\ ( Q .\/ R ) ) = R )