Step |
Hyp |
Ref |
Expression |
1 |
|
2llnm.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
2llnm.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
2llnm.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
2llnm.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐾 ∈ HL ) |
6 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑄 ∈ 𝐴 ) |
11 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ∈ 𝐴 ) |
12 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
13 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
14 |
5 6 10 13
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
15 |
14
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) ) ) |
16 |
12 15
|
mtbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ¬ 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) ) |
17 |
7 1 2 3 4
|
2llnma1b |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) ) → ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑄 ∨ 𝑅 ) ) = 𝑄 ) |
18 |
5 9 10 11 16 17
|
syl131anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑄 ∨ 𝑅 ) ) = 𝑄 ) |