Metamath Proof Explorer


Theorem 2ndval2

Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of Monk1 p. 52. (Contributed by NM, 18-Aug-2006)

Ref Expression
Assertion 2ndval2 AV×V2ndA=A-1

Proof

Step Hyp Ref Expression
1 elvv AV×VxyA=xy
2 vex xV
3 vex yV
4 2 3 op2nd 2ndxy=y
5 2 3 op2ndb xy-1=y
6 4 5 eqtr4i 2ndxy=xy-1
7 fveq2 A=xy2ndA=2ndxy
8 sneq A=xyA=xy
9 8 cnveqd A=xyA-1=xy-1
10 9 inteqd A=xyA-1=xy-1
11 10 inteqd A=xyA-1=xy-1
12 11 inteqd A=xyA-1=xy-1
13 6 7 12 3eqtr4a A=xy2ndA=A-1
14 13 exlimivv xyA=xy2ndA=A-1
15 1 14 sylbi AV×V2ndA=A-1