Step |
Hyp |
Ref |
Expression |
1 |
|
elvv |
|- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
op2nd |
|- ( 2nd ` <. x , y >. ) = y |
5 |
2 3
|
op2ndb |
|- |^| |^| |^| `' { <. x , y >. } = y |
6 |
4 5
|
eqtr4i |
|- ( 2nd ` <. x , y >. ) = |^| |^| |^| `' { <. x , y >. } |
7 |
|
fveq2 |
|- ( A = <. x , y >. -> ( 2nd ` A ) = ( 2nd ` <. x , y >. ) ) |
8 |
|
sneq |
|- ( A = <. x , y >. -> { A } = { <. x , y >. } ) |
9 |
8
|
cnveqd |
|- ( A = <. x , y >. -> `' { A } = `' { <. x , y >. } ) |
10 |
9
|
inteqd |
|- ( A = <. x , y >. -> |^| `' { A } = |^| `' { <. x , y >. } ) |
11 |
10
|
inteqd |
|- ( A = <. x , y >. -> |^| |^| `' { A } = |^| |^| `' { <. x , y >. } ) |
12 |
11
|
inteqd |
|- ( A = <. x , y >. -> |^| |^| |^| `' { A } = |^| |^| |^| `' { <. x , y >. } ) |
13 |
6 7 12
|
3eqtr4a |
|- ( A = <. x , y >. -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |
14 |
13
|
exlimivv |
|- ( E. x E. y A = <. x , y >. -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |
15 |
1 14
|
sylbi |
|- ( A e. ( _V X. _V ) -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |