Metamath Proof Explorer


Theorem 2on

Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion 2on 2𝑜On

Proof

Step Hyp Ref Expression
1 df-2o 2𝑜=suc1𝑜
2 1on 1𝑜On
3 2oex 2𝑜V
4 1 3 eqeltrri suc1𝑜V
5 sucexeloni 1𝑜Onsuc1𝑜Vsuc1𝑜On
6 2 4 5 mp2an suc1𝑜On
7 1 6 eqeltri 2𝑜On