Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Ordinal arithmetic 2on  
				
		 
		
			
		 
		Theorem 2on  
		Description:   Ordinal 2 is an ordinal number.  (Contributed by NM , 18-Feb-2004)   (Proof
     shortened by Andrew Salmon , 12-Aug-2011)   Avoid ax-un  .  (Revised by BTernaryTau , 30-Nov-2024) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					2on   ⊢    2  𝑜    ∈  On       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							df-2o  ⊢    2  𝑜    =   suc  ⁡   1  𝑜           
						
							2 
								
							 
							1on  ⊢    1  𝑜    ∈  On       
						
							3 
								
							 
							2oex  ⊢    2  𝑜    ∈  V       
						
							4 
								1  3 
							 
							eqeltrri  ⊢    suc  ⁡   1  𝑜      ∈  V       
						
							5 
								
							 
							sucexeloni   ⊢     1  𝑜    ∈  On    ∧    suc  ⁡   1  𝑜      ∈  V     →    suc  ⁡   1  𝑜      ∈  On         
						
							6 
								2  4  5 
							 
							mp2an  ⊢    suc  ⁡   1  𝑜      ∈  On       
						
							7 
								1  6 
							 
							eqeltri  ⊢    2  𝑜    ∈  On