Metamath Proof Explorer


Theorem 2pol0N

Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypothesis 2pol0.o ˙=𝑃K
Assertion 2pol0N KHL˙˙=

Proof

Step Hyp Ref Expression
1 2pol0.o ˙=𝑃K
2 eqid AtomsK=AtomsK
3 2 1 pol0N KHL˙=AtomsK
4 3 fveq2d KHL˙˙=˙AtomsK
5 2 1 pol1N KHL˙AtomsK=
6 4 5 eqtrd KHL˙˙=