Metamath Proof Explorer


Theorem pol1N

Description: The polarity of the whole projective subspace is the empty space. Remark in Holland95 p. 223. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a A = Atoms K
polssat.p ˙ = 𝑃 K
Assertion pol1N K HL ˙ A =

Proof

Step Hyp Ref Expression
1 polssat.a A = Atoms K
2 polssat.p ˙ = 𝑃 K
3 ssid A A
4 eqid lub K = lub K
5 eqid oc K = oc K
6 eqid pmap K = pmap K
7 4 5 1 6 2 polval2N K HL A A ˙ A = pmap K oc K lub K A
8 3 7 mpan2 K HL ˙ A = pmap K oc K lub K A
9 hlop K HL K OP
10 eqid Base K = Base K
11 10 1 atbase p A p Base K
12 eqid K = K
13 eqid 1. K = 1. K
14 10 12 13 ople1 K OP p Base K p K 1. K
15 9 11 14 syl2an K HL p A p K 1. K
16 15 ralrimiva K HL p A p K 1. K
17 rabid2 A = p A | p K 1. K p A p K 1. K
18 16 17 sylibr K HL A = p A | p K 1. K
19 18 fveq2d K HL lub K A = lub K p A | p K 1. K
20 hlomcmat K HL K OML K CLat K AtLat
21 10 13 op1cl K OP 1. K Base K
22 9 21 syl K HL 1. K Base K
23 10 12 4 1 atlatmstc K OML K CLat K AtLat 1. K Base K lub K p A | p K 1. K = 1. K
24 20 22 23 syl2anc K HL lub K p A | p K 1. K = 1. K
25 19 24 eqtr2d K HL 1. K = lub K A
26 25 fveq2d K HL oc K 1. K = oc K lub K A
27 eqid 0. K = 0. K
28 27 13 5 opoc1 K OP oc K 1. K = 0. K
29 9 28 syl K HL oc K 1. K = 0. K
30 26 29 eqtr3d K HL oc K lub K A = 0. K
31 30 fveq2d K HL pmap K oc K lub K A = pmap K 0. K
32 hlatl K HL K AtLat
33 27 6 pmap0 K AtLat pmap K 0. K =
34 32 33 syl K HL pmap K 0. K =
35 8 31 34 3eqtrd K HL ˙ A =