Metamath Proof Explorer


Theorem pol1N

Description: The polarity of the whole projective subspace is the empty space. Remark in Holland95 p. 223. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a A=AtomsK
polssat.p ˙=𝑃K
Assertion pol1N KHL˙A=

Proof

Step Hyp Ref Expression
1 polssat.a A=AtomsK
2 polssat.p ˙=𝑃K
3 ssid AA
4 eqid lubK=lubK
5 eqid ocK=ocK
6 eqid pmapK=pmapK
7 4 5 1 6 2 polval2N KHLAA˙A=pmapKocKlubKA
8 3 7 mpan2 KHL˙A=pmapKocKlubKA
9 hlop KHLKOP
10 eqid BaseK=BaseK
11 10 1 atbase pApBaseK
12 eqid K=K
13 eqid 1.K=1.K
14 10 12 13 ople1 KOPpBaseKpK1.K
15 9 11 14 syl2an KHLpApK1.K
16 15 ralrimiva KHLpApK1.K
17 rabid2 A=pA|pK1.KpApK1.K
18 16 17 sylibr KHLA=pA|pK1.K
19 18 fveq2d KHLlubKA=lubKpA|pK1.K
20 hlomcmat KHLKOMLKCLatKAtLat
21 10 13 op1cl KOP1.KBaseK
22 9 21 syl KHL1.KBaseK
23 10 12 4 1 atlatmstc KOMLKCLatKAtLat1.KBaseKlubKpA|pK1.K=1.K
24 20 22 23 syl2anc KHLlubKpA|pK1.K=1.K
25 19 24 eqtr2d KHL1.K=lubKA
26 25 fveq2d KHLocK1.K=ocKlubKA
27 eqid 0.K=0.K
28 27 13 5 opoc1 KOPocK1.K=0.K
29 9 28 syl KHLocK1.K=0.K
30 26 29 eqtr3d KHLocKlubKA=0.K
31 30 fveq2d KHLpmapKocKlubKA=pmapK0.K
32 hlatl KHLKAtLat
33 27 6 pmap0 KAtLatpmapK0.K=
34 32 33 syl KHLpmapK0.K=
35 8 31 34 3eqtrd KHL˙A=