| Step |
Hyp |
Ref |
Expression |
| 1 |
|
polssat.a |
|- A = ( Atoms ` K ) |
| 2 |
|
polssat.p |
|- ._|_ = ( _|_P ` K ) |
| 3 |
|
ssid |
|- A C_ A |
| 4 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 5 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 6 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 7 |
4 5 1 6 2
|
polval2N |
|- ( ( K e. HL /\ A C_ A ) -> ( ._|_ ` A ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` A ) ) ) ) |
| 8 |
3 7
|
mpan2 |
|- ( K e. HL -> ( ._|_ ` A ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` A ) ) ) ) |
| 9 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 1
|
atbase |
|- ( p e. A -> p e. ( Base ` K ) ) |
| 12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 13 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 14 |
10 12 13
|
ople1 |
|- ( ( K e. OP /\ p e. ( Base ` K ) ) -> p ( le ` K ) ( 1. ` K ) ) |
| 15 |
9 11 14
|
syl2an |
|- ( ( K e. HL /\ p e. A ) -> p ( le ` K ) ( 1. ` K ) ) |
| 16 |
15
|
ralrimiva |
|- ( K e. HL -> A. p e. A p ( le ` K ) ( 1. ` K ) ) |
| 17 |
|
rabid2 |
|- ( A = { p e. A | p ( le ` K ) ( 1. ` K ) } <-> A. p e. A p ( le ` K ) ( 1. ` K ) ) |
| 18 |
16 17
|
sylibr |
|- ( K e. HL -> A = { p e. A | p ( le ` K ) ( 1. ` K ) } ) |
| 19 |
18
|
fveq2d |
|- ( K e. HL -> ( ( lub ` K ) ` A ) = ( ( lub ` K ) ` { p e. A | p ( le ` K ) ( 1. ` K ) } ) ) |
| 20 |
|
hlomcmat |
|- ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. AtLat ) ) |
| 21 |
10 13
|
op1cl |
|- ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) |
| 22 |
9 21
|
syl |
|- ( K e. HL -> ( 1. ` K ) e. ( Base ` K ) ) |
| 23 |
10 12 4 1
|
atlatmstc |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ ( 1. ` K ) e. ( Base ` K ) ) -> ( ( lub ` K ) ` { p e. A | p ( le ` K ) ( 1. ` K ) } ) = ( 1. ` K ) ) |
| 24 |
20 22 23
|
syl2anc |
|- ( K e. HL -> ( ( lub ` K ) ` { p e. A | p ( le ` K ) ( 1. ` K ) } ) = ( 1. ` K ) ) |
| 25 |
19 24
|
eqtr2d |
|- ( K e. HL -> ( 1. ` K ) = ( ( lub ` K ) ` A ) ) |
| 26 |
25
|
fveq2d |
|- ( K e. HL -> ( ( oc ` K ) ` ( 1. ` K ) ) = ( ( oc ` K ) ` ( ( lub ` K ) ` A ) ) ) |
| 27 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 28 |
27 13 5
|
opoc1 |
|- ( K e. OP -> ( ( oc ` K ) ` ( 1. ` K ) ) = ( 0. ` K ) ) |
| 29 |
9 28
|
syl |
|- ( K e. HL -> ( ( oc ` K ) ` ( 1. ` K ) ) = ( 0. ` K ) ) |
| 30 |
26 29
|
eqtr3d |
|- ( K e. HL -> ( ( oc ` K ) ` ( ( lub ` K ) ` A ) ) = ( 0. ` K ) ) |
| 31 |
30
|
fveq2d |
|- ( K e. HL -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` A ) ) ) = ( ( pmap ` K ) ` ( 0. ` K ) ) ) |
| 32 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 33 |
27 6
|
pmap0 |
|- ( K e. AtLat -> ( ( pmap ` K ) ` ( 0. ` K ) ) = (/) ) |
| 34 |
32 33
|
syl |
|- ( K e. HL -> ( ( pmap ` K ) ` ( 0. ` K ) ) = (/) ) |
| 35 |
8 31 34
|
3eqtrd |
|- ( K e. HL -> ( ._|_ ` A ) = (/) ) |