Metamath Proof Explorer


Theorem 2reu2reu2

Description: Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion 2reu2reu2 ∃! x A, y B φ ∃! x A ∃! y B φ

Proof

Step Hyp Ref Expression
1 df-2reu ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ
2 2rexreu ∃! x A y B φ ∃! y B x A φ ∃! x A ∃! y B φ
3 1 2 sylbi ∃! x A, y B φ ∃! x A ∃! y B φ