Metamath Proof Explorer


Theorem 2reu2reu2

Description: Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion 2reu2reu2
|- ( E! x e. A , y e. B ph -> E! x e. A E! y e. B ph )

Proof

Step Hyp Ref Expression
1 df-2reu
 |-  ( E! x e. A , y e. B ph <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) )
2 2rexreu
 |-  ( ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) -> E! x e. A E! y e. B ph )
3 1 2 sylbi
 |-  ( E! x e. A , y e. B ph -> E! x e. A E! y e. B ph )