Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opreu2reu1.a | |- ( p = <. x , y >. -> ( ch <-> ph ) ) |
|
Assertion | opreu2reu1 | |- ( E! x e. A , y e. B ph <-> E! p e. ( A X. B ) ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opreu2reu1.a | |- ( p = <. x , y >. -> ( ch <-> ph ) ) |
|
2 | df-2reu | |- ( E! x e. A , y e. B ph <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) ) |
|
3 | 1 | opreu2reurex | |- ( E! p e. ( A X. B ) ch <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) ) |
4 | 2 3 | bitr4i | |- ( E! x e. A , y e. B ph <-> E! p e. ( A X. B ) ch ) |