Metamath Proof Explorer


Theorem opreu2reu1

Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypothesis opreu2reu1.a
|- ( p = <. x , y >. -> ( ch <-> ph ) )
Assertion opreu2reu1
|- ( E! x e. A , y e. B ph <-> E! p e. ( A X. B ) ch )

Proof

Step Hyp Ref Expression
1 opreu2reu1.a
 |-  ( p = <. x , y >. -> ( ch <-> ph ) )
2 df-2reu
 |-  ( E! x e. A , y e. B ph <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) )
3 1 opreu2reurex
 |-  ( E! p e. ( A X. B ) ch <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) )
4 2 3 bitr4i
 |-  ( E! x e. A , y e. B ph <-> E! p e. ( A X. B ) ch )