Metamath Proof Explorer


Theorem opreu2reu1

Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypothesis opreu2reu1.a ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜒𝜑 ) )
Assertion opreu2reu1 ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 )

Proof

Step Hyp Ref Expression
1 opreu2reu1.a ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜒𝜑 ) )
2 df-2reu ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
3 1 opreu2reurex ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
4 2 3 bitr4i ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 )