Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opreu2reu1.a | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝜒 ↔ 𝜑 ) ) | |
Assertion | opreu2reu1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opreu2reu1.a | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝜒 ↔ 𝜑 ) ) | |
2 | df-2reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
3 | 1 | opreu2reurex | ⊢ ( ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
4 | 2 3 | bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜒 ) |