Step |
Hyp |
Ref |
Expression |
1 |
|
biid |
⊢ ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
1
|
2sqreunnltb |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) ) |
3 |
|
df-2reu |
⊢ ( ∃! 𝑎 ∈ ℕ , 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
4 |
2 3
|
bitr4di |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ∃! 𝑎 ∈ ℕ , 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |