Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4 k + 1 . Double restricted existential uniqueness variant of 2sqreunnltb . (Contributed by AV, 5-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sq2reunnltb | |- ( P e. Prime -> ( ( P mod 4 ) = 1 <-> E! a e. NN , b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid | |- ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
|
2 | 1 | 2sqreunnltb | |- ( P e. Prime -> ( ( P mod 4 ) = 1 <-> ( E! a e. NN E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ E! b e. NN E. a e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) ) |
3 | df-2reu | |- ( E! a e. NN , b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> ( E! a e. NN E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ E! b e. NN E. a e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |
|
4 | 2 3 | bitr4di | |- ( P e. Prime -> ( ( P mod 4 ) = 1 <-> E! a e. NN , b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |