Metamath Proof Explorer


Theorem opreu2reu1

Description: Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypothesis opreu2reu1.a p = x y χ φ
Assertion opreu2reu1 ∃! x A, y B φ ∃! p A × B χ

Proof

Step Hyp Ref Expression
1 opreu2reu1.a p = x y χ φ
2 df-2reu ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ
3 1 opreu2reurex ∃! p A × B χ ∃! x A y B φ ∃! y B x A φ
4 2 3 bitr4i ∃! x A, y B φ ∃! p A × B χ