Description: Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2reu2reu2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
2 | 2rexreu | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) | |
3 | 1 2 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |