Metamath Proof Explorer


Theorem 2reu2reu2

Description: Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion 2reu2reu2 ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 df-2reu ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
2 2rexreu ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )
3 1 2 sylbi ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )