Metamath Proof Explorer


Theorem 2reu2rex1

Description: Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion 2reu2rex1 Math input error

Proof

Step Hyp Ref Expression
1 df-2reu Math input error
2 1 simplbi Math input error
3 reurex ∃!xAyBφxAyBφ
4 2 3 syl Math input error