Metamath Proof Explorer


Theorem 2rexrsb

Description: An equivalent expression for double restricted existence, analogous to 2exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion 2rexrsb xAyBφzAwBxAyBx=zy=wφ

Proof

Step Hyp Ref Expression
1 rexrsb yBφwByBy=wφ
2 1 rexbii xAyBφxAwByBy=wφ
3 rexcom xAwByBy=wφwBxAyBy=wφ
4 2 3 bitri xAyBφwBxAyBy=wφ
5 rexrsb xAyBy=wφzAxAx=zyBy=wφ
6 impexp x=zy=wφx=zy=wφ
7 6 ralbii yBx=zy=wφyBx=zy=wφ
8 r19.21v yBx=zy=wφx=zyBy=wφ
9 7 8 bitr2i x=zyBy=wφyBx=zy=wφ
10 9 ralbii xAx=zyBy=wφxAyBx=zy=wφ
11 10 rexbii zAxAx=zyBy=wφzAxAyBx=zy=wφ
12 5 11 bitri xAyBy=wφzAxAyBx=zy=wφ
13 12 rexbii wBxAyBy=wφwBzAxAyBx=zy=wφ
14 rexcom wBzAxAyBx=zy=wφzAwBxAyBx=zy=wφ
15 13 14 bitri wBxAyBy=wφzAwBxAyBx=zy=wφ
16 4 15 bitri xAyBφzAwBxAyBx=zy=wφ