Metamath Proof Explorer


Theorem rexrsb

Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion rexrsb xAφyAxAx=yφ

Proof

Step Hyp Ref Expression
1 rexsb xAφyAxx=yφ
2 alral xx=yφxAx=yφ
3 df-ral xAx=yφxxAx=yφ
4 19.27v xxAx=yφyAxxAx=yφyA
5 pm2.04 xAx=yφx=yxAφ
6 eleq1w x=yxAyA
7 6 biimprd x=yyAxA
8 7 imim1d x=yxAφyAφ
9 8 a2i x=yxAφx=yyAφ
10 pm2.04 x=yyAφyAx=yφ
11 5 9 10 3syl xAx=yφyAx=yφ
12 11 imp xAx=yφyAx=yφ
13 12 alimi xxAx=yφyAxx=yφ
14 4 13 sylbir xxAx=yφyAxx=yφ
15 14 ex xxAx=yφyAxx=yφ
16 3 15 sylbi xAx=yφyAxx=yφ
17 16 com12 yAxAx=yφxx=yφ
18 2 17 impbid2 yAxx=yφxAx=yφ
19 18 rexbiia yAxx=yφyAxAx=yφ
20 1 19 bitri xAφyAxAx=yφ