| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexsb | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑦  ∈  𝐴 ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 2 |  | alral | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 3 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 4 |  | 19.27v | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  ∧  𝑦  ∈  𝐴 )  ↔  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 5 |  | pm2.04 | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  →  ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 6 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 7 | 6 | biimprd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 8 | 7 | imim1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑦  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 9 | 8 | a2i | ⊢ ( ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  →  𝜑 ) )  →  ( 𝑥  =  𝑦  →  ( 𝑦  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 10 |  | pm2.04 | ⊢ ( ( 𝑥  =  𝑦  →  ( 𝑦  ∈  𝐴  →  𝜑 ) )  →  ( 𝑦  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 11 | 5 9 10 | 3syl | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  →  ( 𝑦  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 13 | 12 | alimi | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  ∧  𝑦  ∈  𝐴 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 14 | 4 13 | sylbir | ⊢ ( ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  ∧  𝑦  ∈  𝐴 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝑦  →  𝜑 ) )  →  ( 𝑦  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 16 | 3 15 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 )  →  ( 𝑦  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 18 | 2 17 | impbid2 | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 19 | 18 | rexbiia | ⊢ ( ∃ 𝑦  ∈  𝐴 ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ↔  ∃ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 20 | 1 19 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑥  =  𝑦  →  𝜑 ) ) |