Metamath Proof Explorer


Theorem rexrsb

Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion rexrsb ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 rexsb ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥 ( 𝑥 = 𝑦𝜑 ) )
2 alral ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) )
3 df-ral ( ∀ 𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) )
4 19.27v ( ∀ 𝑥 ( ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) ∧ 𝑦𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) ∧ 𝑦𝐴 ) )
5 pm2.04 ( ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) → ( 𝑥 = 𝑦 → ( 𝑥𝐴𝜑 ) ) )
6 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
7 6 biimprd ( 𝑥 = 𝑦 → ( 𝑦𝐴𝑥𝐴 ) )
8 7 imim1d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) → ( 𝑦𝐴𝜑 ) ) )
9 8 a2i ( ( 𝑥 = 𝑦 → ( 𝑥𝐴𝜑 ) ) → ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) )
10 pm2.04 ( ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) → ( 𝑦𝐴 → ( 𝑥 = 𝑦𝜑 ) ) )
11 5 9 10 3syl ( ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) → ( 𝑦𝐴 → ( 𝑥 = 𝑦𝜑 ) ) )
12 11 imp ( ( ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) ∧ 𝑦𝐴 ) → ( 𝑥 = 𝑦𝜑 ) )
13 12 alimi ( ∀ 𝑥 ( ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) ∧ 𝑦𝐴 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
14 4 13 sylbir ( ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) ∧ 𝑦𝐴 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
15 14 ex ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥 = 𝑦𝜑 ) ) → ( 𝑦𝐴 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
16 3 15 sylbi ( ∀ 𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) → ( 𝑦𝐴 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
17 16 com12 ( 𝑦𝐴 → ( ∀ 𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
18 2 17 impbid2 ( 𝑦𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) ) )
19 18 rexbiia ( ∃ 𝑦𝐴𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∃ 𝑦𝐴𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) )
20 1 19 bitri ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥𝐴 ( 𝑥 = 𝑦𝜑 ) )