Step |
Hyp |
Ref |
Expression |
1 |
|
rexsb |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
2 |
|
alral |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) ) |
3 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
4 |
|
19.27v |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ∧ 𝑦 ∈ 𝐴 ) ) |
5 |
|
pm2.04 |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
6 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
7 |
6
|
biimprd |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
8 |
7
|
imim1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
9 |
8
|
a2i |
⊢ ( ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
10 |
|
pm2.04 |
⊢ ( ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝐴 → 𝜑 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
11 |
5 9 10
|
3syl |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
13 |
12
|
alimi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
14 |
4 13
|
sylbir |
⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
15 |
14
|
ex |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
16 |
3 15
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
18 |
2 17
|
impbid2 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
19 |
18
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) ) |
20 |
1 19
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 → 𝜑 ) ) |