Metamath Proof Explorer


Theorem rexsb

Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion rexsb ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥 ( 𝑥 = 𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑦 𝜑
2 nfa1 𝑥𝑥 ( 𝑥 = 𝑦𝜑 )
3 ax12v ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
4 sp ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜑 ) )
5 4 com12 ( 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
6 3 5 impbid ( 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
7 1 2 6 cbvrexw ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥 ( 𝑥 = 𝑦𝜑 ) )