Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rexsb | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
2 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) | |
3 | ax12v | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
4 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) | |
5 | 4 | com12 | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
6 | 3 5 | impbid | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
7 | 1 2 6 | cbvrexw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |