Metamath Proof Explorer


Theorem rexsb

Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion rexsb xAφyAxx=yφ

Proof

Step Hyp Ref Expression
1 nfv yφ
2 nfa1 xxx=yφ
3 ax12v x=yφxx=yφ
4 sp xx=yφx=yφ
5 4 com12 x=yxx=yφφ
6 3 5 impbid x=yφxx=yφ
7 1 2 6 cbvrexw xAφyAxx=yφ