Metamath Proof Explorer


Theorem rexsb

Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion rexsb x A φ y A x x = y φ

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nfa1 x x x = y φ
3 ax12v x = y φ x x = y φ
4 sp x x = y φ x = y φ
5 4 com12 x = y x x = y φ φ
6 3 5 impbid x = y φ x x = y φ
7 1 2 6 cbvrexw x A φ y A x x = y φ