Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsb | |- ( E. x e. A ph <-> E. y e. A A. x ( x = y -> ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv | |- F/ y ph | |
| 2 | nfa1 | |- F/ x A. x ( x = y -> ph ) | |
| 3 | ax12v | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) | |
| 4 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) | |
| 5 | 4 | com12 | |- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) | 
| 6 | 3 5 | impbid | |- ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) ) | 
| 7 | 1 2 6 | cbvrexw | |- ( E. x e. A ph <-> E. y e. A A. x ( x = y -> ph ) ) |