Description: An equivalent expression for restricted existence, analogous to exsb . (Contributed by Alexander van der Vekens, 1-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rexsb | |- ( E. x e. A ph <-> E. y e. A A. x ( x = y -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ y ph |
|
2 | nfa1 | |- F/ x A. x ( x = y -> ph ) |
|
3 | ax12v | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
4 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
|
5 | 4 | com12 | |- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) |
6 | 3 5 | impbid | |- ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) ) |
7 | 1 2 6 | cbvrexw | |- ( E. x e. A ph <-> E. y e. A A. x ( x = y -> ph ) ) |