Step |
Hyp |
Ref |
Expression |
1 |
|
rexsb |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) |
3 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∃ 𝑤 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) |
4 |
2 3
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑤 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) |
5 |
|
rexsb |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
6 |
|
impexp |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ↔ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
8 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
9 |
7 8
|
bitr2i |
⊢ ( ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
11 |
10
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
12 |
5 11
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∃ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
14 |
|
rexcom |
⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
15 |
13 14
|
bitri |
⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
16 |
4 15
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |