| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexsb | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑤  ∈  𝐵 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) | 
						
							| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) | 
						
							| 3 |  | rexcom | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 )  ↔  ∃ 𝑤  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑤  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) | 
						
							| 5 |  | rexsb | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 )  ↔  ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ( 𝑥  =  𝑧  →  ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) ) | 
						
							| 6 |  | impexp | ⊢ ( ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 )  ↔  ( 𝑥  =  𝑧  →  ( 𝑦  =  𝑤  →  𝜑 ) ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 )  ↔  ∀ 𝑦 ( 𝑥  =  𝑧  →  ( 𝑦  =  𝑤  →  𝜑 ) ) ) | 
						
							| 8 |  | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥  =  𝑧  →  ( 𝑦  =  𝑤  →  𝜑 ) )  ↔  ( 𝑥  =  𝑧  →  ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) ) ) | 
						
							| 9 | 7 8 | bitr2i | ⊢ ( ( 𝑥  =  𝑧  →  ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) )  ↔  ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑧  →  ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 11 | 10 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ( 𝑥  =  𝑧  →  ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 ) )  ↔  ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 12 | 5 11 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 )  ↔  ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑤  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 )  ↔  ∃ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 14 |  | rexcom | ⊢ ( ∃ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑤  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  =  𝑤  →  𝜑 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 16 | 4 15 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) |