Metamath Proof Explorer


Theorem 2sb5

Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)

Ref Expression
Assertion 2sb5 zxwyφxyx=zy=wφ

Proof

Step Hyp Ref Expression
1 sb5 zxwyφxx=zwyφ
2 19.42v yx=zy=wφx=zyy=wφ
3 anass x=zy=wφx=zy=wφ
4 3 exbii yx=zy=wφyx=zy=wφ
5 sb5 wyφyy=wφ
6 5 anbi2i x=zwyφx=zyy=wφ
7 2 4 6 3bitr4ri x=zwyφyx=zy=wφ
8 7 exbii xx=zwyφxyx=zy=wφ
9 1 8 bitri zxwyφxyx=zy=wφ