Metamath Proof Explorer


Theorem 2strbas1

Description: The base set of a constructed two-slot structure. Version of 2strbas not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g G=BasendxBN+˙
2str1.b Basendx<N
2str1.n N
Assertion 2strbas1 BVB=BaseG

Proof

Step Hyp Ref Expression
1 2str1.g G=BasendxBN+˙
2 2str1.b Basendx<N
3 2str1.n N
4 1 2 3 2strstr1 GStructBasendxN
5 baseid Base=SlotBasendx
6 snsspr1 BasendxBBasendxBN+˙
7 6 1 sseqtrri BasendxBG
8 4 5 7 strfv BVB=BaseG