Metamath Proof Explorer


Theorem 2zrngmul

Description: The ring multiplication operation of R is the multiplication on complex numbers. (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
Assertion 2zrngmul ×=R

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 zex V
4 1 3 rabex2 EV
5 2 cnfldsrngmul EV×=R
6 4 5 ax-mp ×=R