| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
|
| 2 |
|
2zrngbas.r |
|
| 3 |
|
2zrngmmgm.1 |
|
| 4 |
|
eqeq1 |
|
| 5 |
4
|
rexbidv |
|
| 6 |
5 1
|
elrab2 |
|
| 7 |
|
eqeq1 |
|
| 8 |
7
|
rexbidv |
|
| 9 |
8 1
|
elrab2 |
|
| 10 |
|
zmulcl |
|
| 11 |
10
|
ad2ant2r |
|
| 12 |
|
nfv |
|
| 13 |
|
nfv |
|
| 14 |
|
nfre1 |
|
| 15 |
13 14
|
nfan |
|
| 16 |
|
nfv |
|
| 17 |
15 16
|
nfim |
|
| 18 |
12 17
|
nfim |
|
| 19 |
|
simpll |
|
| 20 |
|
simpl |
|
| 21 |
|
zmulcl |
|
| 22 |
19 20 21
|
syl2an |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
adantl |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
ad3antlr |
|
| 28 |
|
2cnd |
|
| 29 |
|
zcn |
|
| 30 |
29
|
ad3antrrr |
|
| 31 |
|
zcn |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
adantl |
|
| 34 |
28 30 33
|
mulassd |
|
| 35 |
27 34
|
eqtrd |
|
| 36 |
22 25 35
|
rspcedvd |
|
| 37 |
36
|
exp41 |
|
| 38 |
18 37
|
rexlimi |
|
| 39 |
38
|
impcom |
|
| 40 |
39
|
imp |
|
| 41 |
|
eqeq1 |
|
| 42 |
41
|
rexbidv |
|
| 43 |
42 1
|
elrab2 |
|
| 44 |
|
oveq2 |
|
| 45 |
44
|
eqeq2d |
|
| 46 |
45
|
cbvrexvw |
|
| 47 |
46
|
anbi2i |
|
| 48 |
43 47
|
bitri |
|
| 49 |
11 40 48
|
sylanbrc |
|
| 50 |
6 9 49
|
syl2anb |
|
| 51 |
50
|
rgen2 |
|
| 52 |
1
|
0even |
|
| 53 |
1 2
|
2zrngbas |
|
| 54 |
3 53
|
mgpbas |
|
| 55 |
1 2
|
2zrngmul |
|
| 56 |
3 55
|
mgpplusg |
|
| 57 |
54 56
|
ismgmn0 |
|
| 58 |
52 57
|
ax-mp |
|
| 59 |
51 58
|
mpbir |
|