Metamath Proof Explorer


Theorem 2zrngmmgm

Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngmmgm M Mgm

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 eqeq1 z = a z = 2 x a = 2 x
5 4 rexbidv z = a x z = 2 x x a = 2 x
6 5 1 elrab2 a E a x a = 2 x
7 eqeq1 z = b z = 2 x b = 2 x
8 7 rexbidv z = b x z = 2 x x b = 2 x
9 8 1 elrab2 b E b x b = 2 x
10 zmulcl a b a b
11 10 ad2ant2r a x a = 2 x b x b = 2 x a b
12 nfv x a
13 nfv x b
14 nfre1 x x b = 2 x
15 13 14 nfan x b x b = 2 x
16 nfv x y a b = 2 y
17 15 16 nfim x b x b = 2 x y a b = 2 y
18 12 17 nfim x a b x b = 2 x y a b = 2 y
19 simpll x a = 2 x a x
20 simpl b x b = 2 x b
21 zmulcl x b x b
22 19 20 21 syl2an x a = 2 x a b x b = 2 x x b
23 oveq2 y = x b 2 y = 2 x b
24 23 eqeq2d y = x b a b = 2 y a b = 2 x b
25 24 adantl x a = 2 x a b x b = 2 x y = x b a b = 2 y a b = 2 x b
26 oveq1 a = 2 x a b = 2 x b
27 26 ad3antlr x a = 2 x a b x b = 2 x a b = 2 x b
28 2cnd x a = 2 x a b x b = 2 x 2
29 zcn x x
30 29 ad3antrrr x a = 2 x a b x b = 2 x x
31 zcn b b
32 31 adantr b x b = 2 x b
33 32 adantl x a = 2 x a b x b = 2 x b
34 28 30 33 mulassd x a = 2 x a b x b = 2 x 2 x b = 2 x b
35 27 34 eqtrd x a = 2 x a b x b = 2 x a b = 2 x b
36 22 25 35 rspcedvd x a = 2 x a b x b = 2 x y a b = 2 y
37 36 exp41 x a = 2 x a b x b = 2 x y a b = 2 y
38 18 37 rexlimi x a = 2 x a b x b = 2 x y a b = 2 y
39 38 impcom a x a = 2 x b x b = 2 x y a b = 2 y
40 39 imp a x a = 2 x b x b = 2 x y a b = 2 y
41 eqeq1 z = a b z = 2 x a b = 2 x
42 41 rexbidv z = a b x z = 2 x x a b = 2 x
43 42 1 elrab2 a b E a b x a b = 2 x
44 oveq2 x = y 2 x = 2 y
45 44 eqeq2d x = y a b = 2 x a b = 2 y
46 45 cbvrexvw x a b = 2 x y a b = 2 y
47 46 anbi2i a b x a b = 2 x a b y a b = 2 y
48 43 47 bitri a b E a b y a b = 2 y
49 11 40 48 sylanbrc a x a = 2 x b x b = 2 x a b E
50 6 9 49 syl2anb a E b E a b E
51 50 rgen2 a E b E a b E
52 1 0even 0 E
53 1 2 2zrngbas E = Base R
54 3 53 mgpbas E = Base M
55 1 2 2zrngmul × = R
56 3 55 mgpplusg × = + M
57 54 56 ismgmn0 0 E M Mgm a E b E a b E
58 52 57 ax-mp M Mgm a E b E a b E
59 51 58 mpbir M Mgm