Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
2 |
|
2zrngbas.r |
|- R = ( CCfld |`s E ) |
3 |
|
2zrngmmgm.1 |
|- M = ( mulGrp ` R ) |
4 |
|
eqeq1 |
|- ( z = a -> ( z = ( 2 x. x ) <-> a = ( 2 x. x ) ) ) |
5 |
4
|
rexbidv |
|- ( z = a -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ a = ( 2 x. x ) ) ) |
6 |
5 1
|
elrab2 |
|- ( a e. E <-> ( a e. ZZ /\ E. x e. ZZ a = ( 2 x. x ) ) ) |
7 |
|
eqeq1 |
|- ( z = b -> ( z = ( 2 x. x ) <-> b = ( 2 x. x ) ) ) |
8 |
7
|
rexbidv |
|- ( z = b -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ b = ( 2 x. x ) ) ) |
9 |
8 1
|
elrab2 |
|- ( b e. E <-> ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) |
10 |
|
zmulcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a x. b ) e. ZZ ) |
11 |
10
|
ad2ant2r |
|- ( ( ( a e. ZZ /\ E. x e. ZZ a = ( 2 x. x ) ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( a x. b ) e. ZZ ) |
12 |
|
nfv |
|- F/ x a e. ZZ |
13 |
|
nfv |
|- F/ x b e. ZZ |
14 |
|
nfre1 |
|- F/ x E. x e. ZZ b = ( 2 x. x ) |
15 |
13 14
|
nfan |
|- F/ x ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) |
16 |
|
nfv |
|- F/ x E. y e. ZZ ( a x. b ) = ( 2 x. y ) |
17 |
15 16
|
nfim |
|- F/ x ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) |
18 |
12 17
|
nfim |
|- F/ x ( a e. ZZ -> ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) |
19 |
|
simpll |
|- ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) -> x e. ZZ ) |
20 |
|
simpl |
|- ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> b e. ZZ ) |
21 |
|
zmulcl |
|- ( ( x e. ZZ /\ b e. ZZ ) -> ( x x. b ) e. ZZ ) |
22 |
19 20 21
|
syl2an |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( x x. b ) e. ZZ ) |
23 |
|
oveq2 |
|- ( y = ( x x. b ) -> ( 2 x. y ) = ( 2 x. ( x x. b ) ) ) |
24 |
23
|
eqeq2d |
|- ( y = ( x x. b ) -> ( ( a x. b ) = ( 2 x. y ) <-> ( a x. b ) = ( 2 x. ( x x. b ) ) ) ) |
25 |
24
|
adantl |
|- ( ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) /\ y = ( x x. b ) ) -> ( ( a x. b ) = ( 2 x. y ) <-> ( a x. b ) = ( 2 x. ( x x. b ) ) ) ) |
26 |
|
oveq1 |
|- ( a = ( 2 x. x ) -> ( a x. b ) = ( ( 2 x. x ) x. b ) ) |
27 |
26
|
ad3antlr |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( a x. b ) = ( ( 2 x. x ) x. b ) ) |
28 |
|
2cnd |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> 2 e. CC ) |
29 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
30 |
29
|
ad3antrrr |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> x e. CC ) |
31 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
32 |
31
|
adantr |
|- ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> b e. CC ) |
33 |
32
|
adantl |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> b e. CC ) |
34 |
28 30 33
|
mulassd |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( ( 2 x. x ) x. b ) = ( 2 x. ( x x. b ) ) ) |
35 |
27 34
|
eqtrd |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( a x. b ) = ( 2 x. ( x x. b ) ) ) |
36 |
22 25 35
|
rspcedvd |
|- ( ( ( ( x e. ZZ /\ a = ( 2 x. x ) ) /\ a e. ZZ ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) |
37 |
36
|
exp41 |
|- ( x e. ZZ -> ( a = ( 2 x. x ) -> ( a e. ZZ -> ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) ) ) |
38 |
18 37
|
rexlimi |
|- ( E. x e. ZZ a = ( 2 x. x ) -> ( a e. ZZ -> ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) ) |
39 |
38
|
impcom |
|- ( ( a e. ZZ /\ E. x e. ZZ a = ( 2 x. x ) ) -> ( ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) |
40 |
39
|
imp |
|- ( ( ( a e. ZZ /\ E. x e. ZZ a = ( 2 x. x ) ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) |
41 |
|
eqeq1 |
|- ( z = ( a x. b ) -> ( z = ( 2 x. x ) <-> ( a x. b ) = ( 2 x. x ) ) ) |
42 |
41
|
rexbidv |
|- ( z = ( a x. b ) -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ ( a x. b ) = ( 2 x. x ) ) ) |
43 |
42 1
|
elrab2 |
|- ( ( a x. b ) e. E <-> ( ( a x. b ) e. ZZ /\ E. x e. ZZ ( a x. b ) = ( 2 x. x ) ) ) |
44 |
|
oveq2 |
|- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
45 |
44
|
eqeq2d |
|- ( x = y -> ( ( a x. b ) = ( 2 x. x ) <-> ( a x. b ) = ( 2 x. y ) ) ) |
46 |
45
|
cbvrexvw |
|- ( E. x e. ZZ ( a x. b ) = ( 2 x. x ) <-> E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) |
47 |
46
|
anbi2i |
|- ( ( ( a x. b ) e. ZZ /\ E. x e. ZZ ( a x. b ) = ( 2 x. x ) ) <-> ( ( a x. b ) e. ZZ /\ E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) |
48 |
43 47
|
bitri |
|- ( ( a x. b ) e. E <-> ( ( a x. b ) e. ZZ /\ E. y e. ZZ ( a x. b ) = ( 2 x. y ) ) ) |
49 |
11 40 48
|
sylanbrc |
|- ( ( ( a e. ZZ /\ E. x e. ZZ a = ( 2 x. x ) ) /\ ( b e. ZZ /\ E. x e. ZZ b = ( 2 x. x ) ) ) -> ( a x. b ) e. E ) |
50 |
6 9 49
|
syl2anb |
|- ( ( a e. E /\ b e. E ) -> ( a x. b ) e. E ) |
51 |
50
|
rgen2 |
|- A. a e. E A. b e. E ( a x. b ) e. E |
52 |
1
|
0even |
|- 0 e. E |
53 |
1 2
|
2zrngbas |
|- E = ( Base ` R ) |
54 |
3 53
|
mgpbas |
|- E = ( Base ` M ) |
55 |
1 2
|
2zrngmul |
|- x. = ( .r ` R ) |
56 |
3 55
|
mgpplusg |
|- x. = ( +g ` M ) |
57 |
54 56
|
ismgmn0 |
|- ( 0 e. E -> ( M e. Mgm <-> A. a e. E A. b e. E ( a x. b ) e. E ) ) |
58 |
52 57
|
ax-mp |
|- ( M e. Mgm <-> A. a e. E A. b e. E ( a x. b ) e. E ) |
59 |
51 58
|
mpbir |
|- M e. Mgm |