Metamath Proof Explorer


Theorem 2zrngmsgrp

Description: R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngmsgrp Could not format assertion : No typesetting found for |- M e. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 1 2 3 2zrngmmgm M Mgm
5 elrabi a z | x z = 2 x a
6 elrabi y z | x z = 2 x y
7 elrabi b z | x z = 2 x b
8 5 6 7 3anim123i a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a y b
9 zcn a a
10 zcn y y
11 zcn b b
12 9 10 11 3anim123i a y b a y b
13 mulass a y b a y b = a y b
14 8 12 13 3syl a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a y b = a y b
15 14 rgen3 a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a y b = a y b
16 1 2 2zrngbas E = Base R
17 3 16 mgpbas E = Base M
18 1 17 eqtr3i z | x z = 2 x = Base M
19 1 2 2zrngmul × = R
20 3 19 mgpplusg × = + M
21 18 20 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a x. y ) x. b ) = ( a x. ( y x. b ) ) ) ) with typecode |-
22 4 15 21 mpbir2an Could not format M e. Smgrp : No typesetting found for |- M e. Smgrp with typecode |-