| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 |  | 2zrngmmgm.1 | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 4 | 1 2 3 | 2zrngmmgm | ⊢ 𝑀  ∈  Mgm | 
						
							| 5 |  | elrabi | ⊢ ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑎  ∈  ℤ ) | 
						
							| 6 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℤ ) | 
						
							| 7 |  | elrabi | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℤ ) | 
						
							| 8 | 5 6 7 | 3anim123i | ⊢ ( ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } )  →  ( 𝑎  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) | 
						
							| 9 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 10 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 11 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 12 | 9 10 11 | 3anim123i | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑏  ∈  ℂ ) ) | 
						
							| 13 |  | mulass | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( 𝑎  ·  𝑦 )  ·  𝑏 )  =  ( 𝑎  ·  ( 𝑦  ·  𝑏 ) ) ) | 
						
							| 14 | 8 12 13 | 3syl | ⊢ ( ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } )  →  ( ( 𝑎  ·  𝑦 )  ·  𝑏 )  =  ( 𝑎  ·  ( 𝑦  ·  𝑏 ) ) ) | 
						
							| 15 | 14 | rgen3 | ⊢ ∀ 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ( ( 𝑎  ·  𝑦 )  ·  𝑏 )  =  ( 𝑎  ·  ( 𝑦  ·  𝑏 ) ) | 
						
							| 16 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 17 | 3 16 | mgpbas | ⊢ 𝐸  =  ( Base ‘ 𝑀 ) | 
						
							| 18 | 1 17 | eqtr3i | ⊢ { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  =  ( Base ‘ 𝑀 ) | 
						
							| 19 | 1 2 | 2zrngmul | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 20 | 3 19 | mgpplusg | ⊢  ·   =  ( +g ‘ 𝑀 ) | 
						
							| 21 | 18 20 | issgrp | ⊢ ( 𝑀  ∈  Smgrp  ↔  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ( ( 𝑎  ·  𝑦 )  ·  𝑏 )  =  ( 𝑎  ·  ( 𝑦  ·  𝑏 ) ) ) ) | 
						
							| 22 | 4 15 21 | mpbir2an | ⊢ 𝑀  ∈  Smgrp |