Metamath Proof Explorer


Theorem 2zrngmsgrp

Description: R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion 2zrngmsgrp 𝑀 ∈ Smgrp

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
4 1 2 3 2zrngmmgm 𝑀 ∈ Mgm
5 elrabi ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ )
6 elrabi ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ )
7 elrabi ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ )
8 5 6 7 3anim123i ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) )
9 zcn ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ )
10 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
11 zcn ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ )
12 9 10 11 3anim123i ( ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) )
13 mulass ( ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝑎 · 𝑦 ) · 𝑏 ) = ( 𝑎 · ( 𝑦 · 𝑏 ) ) )
14 8 12 13 3syl ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( ( 𝑎 · 𝑦 ) · 𝑏 ) = ( 𝑎 · ( 𝑦 · 𝑏 ) ) )
15 14 rgen3 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 · 𝑦 ) · 𝑏 ) = ( 𝑎 · ( 𝑦 · 𝑏 ) )
16 1 2 2zrngbas 𝐸 = ( Base ‘ 𝑅 )
17 3 16 mgpbas 𝐸 = ( Base ‘ 𝑀 )
18 1 17 eqtr3i { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } = ( Base ‘ 𝑀 )
19 1 2 2zrngmul · = ( .r𝑅 )
20 3 19 mgpplusg · = ( +g𝑀 )
21 18 20 issgrp ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 · 𝑦 ) · 𝑏 ) = ( 𝑎 · ( 𝑦 · 𝑏 ) ) ) )
22 4 15 21 mpbir2an 𝑀 ∈ Smgrp